美国可靠性工程实践之微流星体防护

2019-05-29 11:49

一、概述

1、方法:为使航天器的结构和仪器在密集的微流星体中飞行时,因微流星穿透而受到的损害减至最小,应对它们提供保护。典型的可靠性工程方法包括从保护敏感硬件的结构布置到航天器外保护毡的布置。防护措施的力度基于对飞行剖面中流星体环境的预测、微流量体穿透航天器表面的能力以及穿透所引起严重损伤的可能。2、益处:微流星体的撞击会损坏航天器系统,危及航天器的飞行能力,微流星体防护是要将这种危险减至最小。流星体由行星的喷射物、来自小行星和彗星的微粒形成。撞击会造成航天器局部穿透、穿孔、表层剥落、局部变形或二级断裂。而上述任何一种情况都将导致关键系统的失效。典型的失效模式包括:.致命性断裂.泄漏.爆燃.闪蒸.结构强度降低.腐蚀3、已成功使用该方法的项目:Magellan和Galileo。火星探测器(MGS)和Cassini利用最新的、经改进的行星际流量模型和在密集流星体中飞行的穿透公式。

麦哲伦号

伽利略号

卡西尼号

二、实施方法

1、实施方法

微流星体防护设计的目的是使航天器关键分系统的失效概率达到可以接受的程度。这涉及航天器的用途和任务设计措施,它们也被用于控制航天器的其它环境-辐射防护、热防护、隔热以及空间散热器,这需要用综合的环境设计来解决。

2、损伤评估

为确定航天器防护的适当水平,第一步是用流星体流量计算流星体的环境,流星体流量定义为在航天器任务时间内其每平方米被流星体碰撞的次数。流星体环境依据近地和行星际两种模型进行计算。要特别注意火星和木星之间的小行星带状区。根据安装在Pioneerl0和11, Hellos 1, Galileo和航天器上碰撞测试仪记录的数据以及靠近地球时行星际流量的测量结果(微粒/平方米/秒)现用的模型描述流星体质量和轨迹分布。流星体流量模型随飞行经验的增多不断更新。尽管如此,由于流星体流量大部分具有随机分布,所以用统计模型来确定航天器与一个给定临界质量流星体碰撞的概率。然后,可以对不同的任务阶段分别估算出流星体流量/平方米。例如在轨道转移、空中制动、测绘、中继等阶段。作为微粒质量函数的流量可以通过由任务剖面确定的航天器轨道和速度计算出来。随着对每个任务阶段流星体环境的估计,对每一任务阶段的流量都应将下列三个附加因素考虑在内:要考虑的面积、视场、航天器的姿态。对要考虑的面积而言,航天器设计图中每个关键系统的表面积(以平方米为单位)都应被重新审查;视场是几何因素,它表示一个物体所有可以看得见的表面,可以用射线示踪的计算机程序来计算。该几何因素规定了可以通过安装在某一表面上的任何一个探测器测到流量的份额。因为在垂直于速度矢量方向上的表面将接收最大的流量,而同时在机身后缘接收的流量最小,所以在任务期间航天器的姿态很重要。为得到每个航天器系统的失效率,用相应的面积(平方米)、几何因素和姿态因素与流量(作为速度的函数)相乘以给出要考虑面积上碰撞的期望值。临界质量可以作为导致表面穿透所必要的速度的函数在穿透方程中估算出来。例如,对火星探测器推进剂和氦气贮箱的检测显示,在任务过程中推进剂贮箱1被流星击中(虽然并不是必然损坏)的概率为30%;而推进剂贮箱2被击中的概率为25%;根据损伤评估作出相适宜的保护措施的决策,以使航天器关键分系统受到的损害减至最小。

3、防护措施

1)系统设计措施:在设计航天器结构以及关键组件相对于航天器结构的位置时,要把微流星体防护考虑进去。关键组件要安放在合适的位置以使它们的视场被其它不太关键的组件屏蔽起来,或者虽可能被穿透或变形但不致于造成影响任务完成的损伤。通过这种解决办法,最具有决定性的或最易损伤的电路板将被放在电子舱的最深处。仪表板长轴也将放置在与速度矢量平行的方向上,以使其上通过的流量减至最小。尽管如此,更为现实的是:流星体防护要求应与辐射、热防护的需要相平衡,以实现一个综合的环境设计。

2)运行措施:由于微粒碰撞速度的方向性,航天器的姿态影响到航天器每个侧面所承受的微流星体流量。对于某些任务阶段,例如行星测绘阶段,要将航天器置于行星之间或轨道空间的高流量位置。这样,在一个任务剖面可采用这样的防护措施,即在危险任务阶段调整航天器姿态以使关键系统的损害最小。对于火星探测器(MGS)计划而言,航天器不同侧面的流量都要计算(±X轴、±Y轴、±Z轴方向)。对于任务的巡航阶段而言,航天器的+X轴将朝向地球,不断的姿态调整将使-Y轴和-X轴的流量大小相同。在测绘和中继阶段,MGS沿轨道绕火星飞行,同时和火星一起沿轨道绕太阳飞行,MGS的+Z轴将面对火星,同时+Y轴将正对着火星轨道速度的方向,综合效果是MGS绕Y轴旋转。计算结果显示,航天器前缘((+Y轴方向)的流量大约是尾缘的流量的20倍。MGS的推进剂贮箱和氦毛贮箱都安放在航天器的+Y轴方向,如图1所示。把流星体流量代入穿透公式,并且乘以视场(几何因素)、姿态因素、航天器各侧面的面积,就可以算出能够导致失效的每单位面积上的碰撞数。应用泊松分布可以得出每一任务阶段的失效率,图2所示为MGS贮箱的成功率。

图1火星探测器(MGS)航行任务阶段

图2膜和贮箱

无间距(即单面)的MGS贮箱成功率3)屏蔽保护层:主要的流星体防护技术是采用在航天器关键部件例如推进剂和氦气贮箱表面布置多层隔离(MLI)毡的方法。多层隔离毡山以卜儿层组成:开普顿聚酞胺(尼龙)或聚脂薄膜;金银箔(一边是金,一边是银),它们能提供非常有效的隔热和辐射传热。作为流星体撞击屏蔽的毡的作用在于:当颗粒撞上外壁之前,它们被多层隔离膜粉碎成碎片并使之扩散,且降低这些碎片的速度,使之低于颗粒的原始速度。航天器的损伤由这些颗粒和防护层的碎片造成。

多层隔离毡阻止航天器关键分系统损伤的效率取决于以下几个方面:

a.毡的材料、位置和层数;

b.流星体质量、碰撞速度、密度和碰撞角度;

c.被碰撞的结构材料、厚度、温度、应力大小,以及构成结构与分系统封装板的层数与间隔。多层隔离层的密度与一张薄纸相似但却能阻止大部分碰撞是因为一般的微流星体质量非常小。

由于多层隔离毡性能的确定首先要满足热控的要求,而流星体屏蔽只是次要的用途,所以用于流星体防护的多层隔离的技术要求通常并不总能实现。唯一的例外是专门在Cassini航天器上使用的屏蔽火箭喷管某些组件的多层隔离膜。尽管如此,一计划将航天器多层隔离与航天器结构进行综合设计,以提供最优的流星体防护。提供微流星体防护的多层隔离的主要设计变量是毡与结构间隔距离。

模拟和地面试验证明随着毡与航天器结构表面之间距离的增加,微流星体损伤航天器的可能性将减小。这主要是由于流星抛射体和防护层碎片随着距离增加扩散得更为稀疏。碰撞密集的地方将导致接近抛射体源头质量碎片对该处的刺穿,碎片的扩散将导致稀疏分离的凹坑、凸起或孔。穿透方程式可从建模以及用粒子加速器进行的试验中得到。此式可用于计算任何一个给定表面上导致失效(即穿透)所需的临界流星体质量(mc);有不同的分离方程式用于单面(例如航天器壁和附装的屏蔽层)和双面(例如航天器壁和毡之间的间隔)的情况。公式1用于计算对于几何形状为单面的流星体的临界穿透质量mc(以克为单位)。

公式2用于计算双面结构即膜屏蔽了航天器的结构(例如推进剂贮箱)或组件(例如沿着航天器支架上的电缆)的外部。

式2证明:随着毡与被屏蔽表面之间间隔的增加,流星体临界质量也随之增大,且失效率降低。例如,当应用于对火星探测器推进剂贮箱的检测时,式2表明在给出流星体流量的预计值情况下,每个贮箱表面和多层隔离毡之间5cm的间隔将使每个贮箱在任务期间的失效率降低6%。这意味着推进剂贮箱1的失效率将低于在无间隔情况下的30%,同理,贮箱2的失效率也将低于25%。图3描述了毡与贮箱壁之间的间距对MGS贮箱成功率的影响。

上述公式的适用性受到现有数据的限制。实践证明这些关于微流星体质量和速度的公式与航天器各任务时期情况基本相似。它们提供的最可信的穿透估计量是在0-10km/s速度范围内的。对于更高一些的碰撞速度还缺乏试验的充分验证,但这些公式已经应用于超过10km/s速度的计算。尽管如此,对于超过7km/s的碰撞速度,现有数据仍不足信。JPL目前正在致力于扩展穿透公式的适用范围于更高的速度,他们相信微流星体防护将会做得更好。

图3从发射到任务结束,毡与贮箱壁之间的间距为0、2.5和5cm时,MGS贮箱的成功率

4、技术依据:流星体能够穿透航天器表面层这一点已经被流星探测卫星和其它近地的航天器广泛地验证。可以推想,行星际微流星体也能毁坏航天器。近地和行星际空间特别是在火星与木星之间的小行星带状区域的流星体环境模型在不断地进行修正。尽管如此,由于流星体流量的绝大部分具有不规则分布,所以用统计学模型来确定航天器与一个给定临界质量的流星体碰撞的概率。流星体的破坏力取决于它的质量、速度、密度和碰撞角度。被碰撞结构的物理反应取决于材料、厚度、温度、应力量级和组成结构内的板(包括屏蔽层)的数日和间距。基于对可以导致失效的碰撞数据的计算和微流星体流量的模型,可以估算出损害程度,并且采用相应的设计或运行措施。

5、不使用该方法的后果:对航天器和任务设计如果不采取微流星体防护措施将会增加航天器遭受重大损伤的危险,特别是在流星体高流量区域和易受损伤的任务阶段。由于行星际飞行时实际的流星体损害数据的缺乏使得微流星体防护要求很难得到验证。尽管如此,在技术和经济制约条件下采用微流星体防护措施仍是谨慎的设计途径。

分享到:
收藏